Semantic Explanation for Deep Neural Networks Using Feature Interactions
نویسندگان
چکیده
Given the promising results obtained by deep-learning techniques in multimedia analysis, explainability of predictions made networks has become important practical applications. We present a method to generate semantic and quantitative explanations that are easily interpretable humans. The previous work obtain such focused on contributions each feature, taking their sum be prediction result for target variable; lack discriminative power due this simple additive formulation led low explanatory performance. Our considers not only individual features but also interactions, more detailed interpretation decisions networks. algorithm is based factorization machine, calculates factor vectors feature. conducted experiments multiple datasets with different models validate our method, achieving higher performance than work. show including interactions generates makes them richer able convey information. examples produced visual format verify they plausible.
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Improved feature processing for deep neural networks
In this paper, we investigate alternative ways of processing MFCC-based features to use as the input to Deep Neural Networks (DNNs). Our baseline is a conventional feature pipeline that involves splicing the 13-dimensional front-end MFCCs across 9 frames, followed by applying LDA to reduce the dimension to 40 and then further decorrelation using MLLT. Confirming the results of other groups, we ...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملEffective Feature Selection for Pre-Cancerous Cervix Lesions Using Artificial Neural Networks
Since most common form of cervical cancer starts with pre-cancerous changes, a flawless detection of these changes becomes an important issue to prevent and treat the cervix cancer. There are 2 ways to stop this disease from developing. One way is to find and treat pre-cancers before they become true cancers, and the other is to prevent the pre-cancers in the first place. The presented approach...
متن کاملDiscriminative feature-space transforms using deep neural networks
We present a deep neural network (DNN) architecture which learns time-dependent offsets to acoustic feature vectors according to a discriminative objective function such as maximum mutual information (MMI) between the reference words and the transformed acoustic observation sequence. A key ingredient in this technique is a greedy layer-wise pretraining of the network based on minimum squared er...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACM Transactions on Multimedia Computing, Communications, and Applications
سال: 2021
ISSN: ['1551-6857', '1551-6865']
DOI: https://doi.org/10.1145/3474557